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Topological interference is a self-interference of wave packets evolving in 
quantum wells. A particular manifestation of this self-interference is an effect 
with no classical eounterpart--a symmetric wave packet splitting. Employing 
reasonable approximations, we give a semianalytical interpretation of this effect. 

1. I N T R O D U C T I O N  

In the present paper we discuss a quantum effect that arises in the course 
of  the SchrOdinger evolution of a well-defined family of localized initial states 
(typically wave packets) in one-dimensional bounded anharmonic (nonlinear) 
systems. As a consequence of a specific quantum self-interference of the 
evolving state, which we refer to as topological interference, it splits into a 
linear combination of disjointly and symmetrically localized wave packets. 
The splitting occurs only in particular, relatively short time intervals, the type 
of the splitting being different for each of these intervals. The evolution time 
which passes until such an interval is reached is much longer than the interval 
itself. The studied effect demonstrates the essential long-time deviations of 
classical and quantum evolutions, even in cases when these evolutions are 
asymptotically close in the short-time scale. 

The material is organized as follows. In Section 2 we briefly introduce 
the Q-phase-space representation of quantum mechanics (QM), which is a 
particularly natural language for presenting topological interference. This 
interference and the subsequent splitting effect are introduced in Section 3. 
In Section 4 we present an analytical result. It allows us, in the framework 
of an adequate spectral approximation, to interpret the action of  the propagator 
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at specific time instants as a sum of symmetric "pseudotranslations." Thus 
we arrive at a theoretical explanation of the wave packet splitting effect. In 
the concluding Section 5 we discuss briefly the general conditions for occur- 
rence of the splitting effect. 

2. Q-PHASE-SPACE F O R M A L I S M  

In the Q-phase-space representation of quantum mechanics (a transcrip- 
tion of the usual Hilbert space version) the noncommutative ring ~ of opera- 
tors defined on ~ (the quantum Hilbert space) is mapped onto a 
noncommutative ring ~ of functions defined on the classical phase space 
(p, q), so that ~ / ~  ~ .  The mapping ,~/~ ~ is defined using the canonical 
coherent states I p, q), p, q E R, 

�9 ~ ~ A ~ A ( p ,  q) = (p, qlAlp, q) ~ (1) 

The function 'A(p, q) is known as the Q-phase-space representative of the 
operator A. 

The Q-representatives WH(p, q) of all density operators i 5 (corresponding 
to the family of all pure and mixed states in ~),  are called Husimi functions. 
The Husimi functions are real and nonnegative functions on the classical 
phase space (p, q); their integral over this space is equal to one. Therefore 
they are joint phase-space probability distributions. These can be interpreted 
as the distributions corresponding to the QM states with respect to a well- 
defined unsharp joint measurement of the position and momentum observ- 
ables (Busch et al., 1991). The unsharpness is best demonstrated by taking 
the marginals of WH(p, q), 

W ( p ) =  I_+f WH(p, q)dq;  W(q)=  f+]  WH(p, q)dp (2) 

m 

The probability distributions W(s), s = p, q, are related to the usual sharp 
QM probabilities W(s), s = p, q [W(s) = (sll~ls); for pure states W(s) = 
IIt0(s)ll2], through the smoothing convolution 

s = p, q (3) 

On all figures below, the Husimi functions of QM states are presented. They 
are supplemented by the sharp position distributions W(q) (dashed line) and 
the respective convoluted distributions W(q) (solid line). 
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3. THE EFFECT 

3.1. The Hamiltonian 

The splitting effect occurs in one-dimensional one-particle quantum 
systems, characterized by a smooth potential V(x) [V(x ---> +oc) ---> +~]  that 
has a single minimum. Typically these systems are anharmonic oscillators. 
A family of Hamiltonians of this type is, e.g., 

p2 
/ ' )  : - -  -{- c l q  2 "1- c2 (q2 )  "Y, 1 < 'y ~ oo, C 1 ~ 0 ,  C 2 > 0.  ( 4 )  

2~x 

This family is bounded by two analytically solvable models: the harmonic 
oscillator (c2 = 0) and the square well (cl = 0, ",/ -+ ~). The harmonic 
oscillator is excluded from the family as it is an exceptional case for which 
the effect does not hold. (It is well known that the quantum propagation 
generated by quadratic Hamiltonians is essentially classical.) 

3.2. The Initial Condit ion 

Sufficient conditions on the initial state I t~t=0) needed for a clear observa- 
tion of the considered effect are the following: 

(i) The initial state has to be sufficiently localized in phase space: The 
values of Husimi function of the initial state outside a finite region should 
be sufficiently small. Stated otherwise: 

3a: D(W(p)) < a and D(W(q)) < a (5) 

where a is a sufficiently small constant; D(W(o)) is the standard deviation 
of the probability distribution W(o); and W(s), s = p, q is defined as above. 

(ii) The initial state has to be "moderately localized in energy": Let the 
expansion of I qJt=0) in eigenvectors I q/n> of the Hamiltonian H be 

l , (s) , :0> = a . [ ,~  
n 

a ,~--0  iff n < n l ,  n > n 2  (6) 

The present condition requires that 

3b, c: b < n z - n l < c  (7) 

where b is not too small and c not too big. This implies that the initial state 
should essentially lie in a finite-dimensional eigenspace o f / : / o f  "moderate" 
(neither too small nor too big) dimension n2 - nl. 

A typical state that complies with these conditions is a coherent state, 
the average energy of which is neither too high nor too low. (The first 
condition is automatically fulfilled for any coherent state.) 
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3.3. The Time Evolution 

Several characteristic stages in the evolution of one such coherent state 
(Fig. 1, initial state) are presented in Figs. 1-5. [The time units are relative. 
The results are obtained numerically. We have chosen a potential V(x) with 
cl = 0.05, c2 = 0.00075, -y = 6.] The mentioned stages are: 

�9 Semic lass ical  evolut ion (Fig. 2, T = 0.15). Both the sharp (exact) 
and the smeared q (and p) probability distributions evolve classically. The 
quantum evolution of the Husimi function is very close to a Classical evolu- 
tion. This stage has been extensively investigated (e.g., Heller, 1977; Lit- 
tlejohn, 1986). The typical feature (of both the classical and the semiclassical) 
evolution is the stretching of the phase-space distribution along the classical 
trajectories, which arises as a consequence of the anharmonicity. 

�9 Quasic lass ical  evolut ion (Fig. 3, T = 0.30). There is no qualitative 
change in the Husimi function evolution. Its stretching continues. The sharp 
probability distribution gets a reflection interference pattern. The reflection 
interference can be qualitatively described as follows. It occurs when parts 
of the wave packet meet each other while moving in opposite directions. 
This interference is obviously stronger when the packet is more stretched. 
As the wave length of the interference pattern is inversely proportional to 
the relative speed of meeting parts, the reflection interference is in general 
a short-wave one (provided that the energy of the initial wave packet is not 
too low). For this reason it is not "seen" by an unsharp observable and does 
not affect essentially the appearance of the Husimi function. 

�9 Beg inn ing  o f  topological  inter ference (Fig. 4, T = 0.45). The head 
and tail of the spreading wave packet meet. A new interference starts. The 
Husimi function forms a closed loop in phase space. (This is the reason for 
the name we use--topological interference.) In configuration space quick 
parts of the wave packet start overriding its slow parts. Now the relative 
speed of the meeting parts is low. The interference is a long-wave one. 
Therefore the interference pattern is unavoidably detected even with unsharp 
observables and an interference pattern is also seen on the Husimi function. 
This is the moment when the classical and quantum evolutions essentially 
depart from each other. (Note that it is the Q-phase-space representation that 
allows us clearly to distinguish this stage from the previous one.) 

�9 Wave packe t  splitting ef fect  (Fig. 5, T = 1.667). At certain well- 
defined moments of time ( . . . .  T,,, = T l / m  . . . . .  T4 = Tt/4,  T3 = Tl /3 ,  T2 
= Ti /2 ,  T~, To = 2 TO, the evolving wave packet splits into . . . .  m , . . . ,  4, 
3, 2, 1 similar pieces. In the last of these moments (t = To) the initial and 
the evolving state almost coincide. (A + T = T1 there is also only one wave 
packet, similar to the initial one, but it is with inverse momentum.) The 
splitting persists for short time intervals, while the separate parts evolve 
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State at Time T=0.45, Husimi Function 
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semiclassically and stretch. Each such intervals ends when the disjoint parts 
start interfering with each other. 

The first three stages of this quantum evolution are qualitatively well 
understood. This holds also for t = To. (The initial state belongs to an 
essentially finite-dimensional eigenspace. Therefore, as long as there always 
exists a sufficiently good rational approximation of the spectrum, the Schrt~- 
dinger evolution is essentially recurrent.) To our knowledge, however, the 
wave packet splitting effect has not yet been studied. 

4. A SEMIANALYTICAL I N T E R P R E T A T I O N  

To proceed further we make use of the following, easy to prove, equation: 

exp(-in2-~}= ~ a(m)kexp{--i2"rr(~-~+2)}'k=l Vm, n =  1,2 . . . .  

(8) 

(9) 

1 
IIo~(m)kll = - ,  ~x(m)k = ot(m)m- k, k = 1 . . . . .  m (10) 

m 

Next let us consider a quadratic approximation of the spectrum of H: 

En = aln + a2n 2 (11) 

where the coefficients al and a2 are chosen so that /~, is the best mean 
square fit to the true eigenvalues En in the spectral region determined by the 
boundaries n~ and n2 [see condition (ii) above]. The general properties of 
spectra of Hamiltonians of the discussed type guarantee that in the respective 
eigenspace this is a reasonable approximation provided that its dimension is 
not too big. Therefore the action of the propagator onto an initial state 
complying with condition (ii) can be adequately approximated as follows: 

oxo -T l 
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From equations (8)-(12) we 

T =  Tm = -- 
m 

conclude that at special moments of time 

~r(Tm)[+,=o) ~ c~(m)k3- + ~ + T It~=o) 
k=l 

k = l  . . . . .  m, m = l , 2  . . . .  

(13) 

: =  = exp{ - i2 ' rr [3n}  [0n), Vn; a2 al  T=-~t, T=- -T  
a2 

(14) 

Here T is time measured in scaled time units. (Note that in the figures time 

has been rescaled by a factor ~.) In the exceptional cases of the harmonic 
Tr 

oscillator and the square well the operators 3-([3) are readily seen to be 
"pseudotranslations": they translate the phase-space representative of  any 
state along the classical orbits of  the system. This interpretation cannot be 
directly transferred to more general cases, as then the phase-space action of the 
operator 3- cannot be derived analytically. There is, however, good numerical 
evidence that for any anharmonic oscillator 3-(13) I ~(s),=0) is indeed a pseudo- 
translation, supplemented by a certain (weak) deformation. Figure 6 presents 
the Husimi function of the state on the RHS of equation (13). A comparison 
with Fig. 5, which is the Husimi function of the state on the LHS of equation 
(13) (T -~ T3, m = 3) shows that the qualitative similarity of the two figures 
is satisfactory. On top of the Husimi function in Fig. 5 we have plotted the 
classical phase portrait of the Hamiltonian at hand. It is clearly seen that the 
operator 3- performs pseudotranslations of the initial state. 

5. CONCLUSION 

In the preceding discussion we did not comment on all conditions 
imposed on the initial state. First we note that condition (i) is merely required 
for a clearer observation of the splitting. (If the initial state were not localized, 
the pseudotranslated ones could overlap.) In the previous section it became 
rather obvious why n2 - nl should not be big [see condition (ii)]. If n 2 - 
n~ were too small and condition (i) is fulfilled, then it can be shown that the 
pseudotranslated states would strongly overlap and would tend to coincide. 

For more general bounded one-dimensional Hamiltonians than the one 
introduced in Section 3.1 the effect would still be recognizable, but probably 
in combination with other effects (e.g., tunneling for a double well). The 
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reason is that equation (11) is not always a good spectral approximation even 
in a low-dimensional subspace. 

Finally, the effect could be observed in higher dimensional bounded 
systems, but only in certain special integrable cases. 
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